If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8k^2+10k=0
a = 8; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·8·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*8}=\frac{-20}{16} =-1+1/4 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*8}=\frac{0}{16} =0 $
| 25y+15y=-2 | | 7y-4y-10=40.61 | | -6x+14=8x-12 | | 7w-12w-12=11 | | 5(r−3)=r−23+2r | | 7w-12-24=11 | | -7p-10=-12p-4p | | 3m(43+62+57)=55 | | 15+2(x-6)=10x=-37 | | 5=25y | | 4(x-5)+9=-1 | | 2x+3/x+1=5/3 | | 6=4x=6x-16 | | 4n-4=16n+26 | | 5x*x=70 | | 12y-14y=3y+5 | | 84-2x=7x | | 2x-2+3=2x+1 | | (5,5)m=3/4 | | 8-5x=-3x-20 | | 2(x4)=4x+3x+6 | | 7(x-2)+7=4x+3(-2+x) | | 2x^2+3x=4x^2-7x^2 | | 6(x+5)/5=2x-5 | | (3+2x)(2x-3)=135 | | 4(4x-2)+1=16x7 | | 7x-7=1-4+6x-7 | | 5-k+12=165−k+12=16 | | 10-7x+11x=-2(-8+1) | | 71/2x-1/2x=15/4x+39 | | -9x-21=35-1× | | 21=0.84x |